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1 Introduction

This report contains a summary of the mathematical framework used in µQL, an extended
version of MICROQL (Westall 1979Westall 1986).
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2 Symbols

All symbols correspond to the ones used in Westall (1979) and Westall (1986) except the symbol
for the solid concentration (here: q, Westall: a) and the symbols used for features specific to
µQL.

2.1 Scalars

scalar description
Ci free activity of species i
F number of components with fixed, i.e., known, free activity
G number of solid phases
I ionic strength
Ki stability constant of species i
Lpg solubility product of solid phase g
M number of components
N number of species
Piα normalised sensitivity coefficient of species i with respect to equilibrium constant α
Qi stability constant of species i calculated from Ki using the Davies-Equation
Sgj stochiometric coefficient of component j in solid phase g
Tj total analytical concentration of component j
U number of components with unknown free activity (U = M − F )
Wj value used to check convergence
Xj free activity of of component j
Yj residual in material balance equation of component j
α index for any equilibrium constant (−→ Piα)
a factor a in Davies-Equation
aij stochiometric coefficient of component j in species i
b factor b in Davies-Equation
g index for any solid phase (oversaturation calculation)
i index for any species
j, k indices for any component
zjk partial derivative ∂Yj/∂Xk, i.e., an element of the Jacobian

2.2 Vectors and matrices

vector/matrix description
A matrix of aij
C vector of Ci
C? vector of log Ci
K vector of Ki

K? vector of log Ki

L matrix for the transformation of an old set of compo-
nents (columns) to a new set of components (rows)

Lp vector of Lpg
S matrix of Sgj
T vector of Tj
W vector of Wj

X vector of Xj

X? vector of logXj

Y vector of Yj
Z Jacobian of Y with respect to X (matrix of zjk)

2.3 Surface complexation models

The following lists correspond to Tables 3.2 to 3.5 in Westall (1979). Note that the names given
in the column “Variable” correspond to the variables used in the programs. The symbols given
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in the column “Explanation” are used in the formulae in this report.

2.3.1 Fundamental constants

variable symbol or formula description value units
ε dielectric constant of water 82
ε0 permittivity of vacuum 8.85 10−12 C2 m−1 J−1

R gas constant 8.314 J mol−1 K−1

T temperature 298.15 K
B1 NA Avogardo’s constant 6.022 1023 mol−1

B2 (8εε0RT )1/2 0.1174 C m−2 (mol L−1)1/2

B3 F/(2RT ) 19.46 V−1

B4 RT/F 0.0256 V
B5 ln 10RT/F 0.05916 V
B6 F Faraday 96487 C mol−1

2.3.2 Adjustable parameters

variable symbol description units
C1 NS surface site density sites m−2

C2 s specific surface area m2 g−1

C3 q concentration of solid g L−1

(a Westall (1979))
C4 I ionic strength
C5 C1 capacitance (inner) F m−2

C6 C2 capacitance (outer) F m−2

2.3.3 Computed electrostatic quantities

variable symbol definition units
D0 Ψ0 surface potential V
D1 Ψ1 surface potential V
D2 Ψ2 surface potential V
D3 s (8εε0RT )1/2 sinh(FΨ/(2RT )) C m−2

charge computed by Poisson-Boltzman
for a monovalent electrolyte.

D4 sq/F m2 C−1 mol L−1

conversion factor from electrostatic
quantities ([σ] = Cm−2) to concentra-
tion ([Tσ] = molL−1): Tσ = σsq/F

2.3.4 Surface component identification

variable identifies description
L0 Ψ0, σ0 surface potential, charge
L1 Ψ1, σ1 surface potential, charge
L2 Ψ2, σ2 surface potential, charge
L3 SOH surface component

3 Solution speciation

A modified Newton-Raphson algorithm (no negative free activities are allowed) is used to solve
the system of the U mass-balance equations, which are generally non-linear, by optimising the
free activities Xj of the components.

The residual Yj is calculated by

Yj = Tj,calc − Tj j = 1 . . . U (1)
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Using

Tj,calc =
N∑
i=1

aijCi j = 1 . . .M (2)

Equation 1 can be written as

Yj =
N∑
i=1

aijCi − Tj j = 1 . . .M (3)

or, in matrix notation

Y = tAC − T (4)

where tA is the transpose of matrix A. The problem is solved when Y = 0.
The concentrations of the species, Ci, are calculated by

Ci = Ki

M∏
j=1

X
aij
j i = 1 . . .N (5)

Taking the logarithm of Equation 5 yields

log Ci = log Ki +
M∑
j=1

aij log Xj i = 1 . . .N (6)

or, in matrix notation,

C? = K? + AX? (7)

The derivatives zjk = ∂Yj/∂Xk needed in the Newton-Raphson algorithm can be calculated
from Equation 3:

∂Yj
∂Xk

=
N∑
i=1

aij
∂Ci
∂Xk

− ∂Tj
∂Xk

j, k = 1 . . . U (8)

Since Tj is constant:

∂Tj
∂Xk

= 0 (9)

From Equation 5, we obtain

∂Ci
∂Xk

= aik
Ci
Xk

(10)

Substituting Equations 9 and 10 in Equation 8 yields

zjk =
∂Yj
∂Xk

=
N∑
i=1

aijaikCi
Xk

j, k = 1 . . . U (11)

The set of equations to be solved can be expressed in matrix notation as

Z∆X = Y (12)

where

∆X = Xoriginal −Ximproved (13)
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If Ximproved < 0, then it is calculated according to

Ximproved =
Xoriginal

f
(14)

where f is an empirical constant (e.g. 10).
Convergence is reached when

Wj =
|Yj |∑N

i=1 |aijCi|+ |Tj |
< ε for all j; j = 1 . . . U (15)

ε1 is a small number, e.g. 1.E − 6.

4 Transformation of components

It is sometimes easier to transform a set of “old” components to a set of “new” components
by specifying a transformation matrix L than to formulate a new MICROQL problem. The
transformations of the vectors T , X?, and K? and the matrix A are given by

Tnew = tL−1Told (16)
X?

new = LX?
old (17)

K?
new = K?

old (18)
Anew = AoldL−1 (19)

where L−1 is the inverse of the transformation matrix L.

5 Davies-Equation (model 1)

Equilibrium constants adjusted for ionic strength, Qi, are calculated using the Davies-Equation
(Baes & Mesmer 1976):

log Qi = log Ki + a

√
I

1 +
√

I
+ bI (20)

6 Surface complexation models

This section describes the modifications necessary to compute adsorption of chemical species on
charged surfaces. It is based on the report published by Westall (1979).

Consider the proton transfer reactions at an amphoteric surface

SOH + H+ ⇀↽ SOH+
2

SOH−H+ ⇀↽ SO−

where SOH represents a surface hydroxyl group. Since the surface may be at a potential Ψ with
respect to the bulk of the solution, the coulombic energy of charged surface groups, zFΨ, must
be accounted for in the mass action equations for the two reactions:

[SOH][H+]e−FΨ/RTK+ = [SOH+
2 ]

[SOH][H+]−1(e−FΨ/RT )−1K− = [SO−]

It is apparent that that the electrostatic potential term, exp(−FΨ/RT ), in these equations
appears in the same form as the chemical concentration. This suggests that it is be appropriate
to include the electrostatic potential in the set of components.

1symbol-clash: not the same as the dielectric constant of water
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The charge on the surface can be defined as the excess of positive groups over negative groups

Tσ = [SOH+
2 ]− [SO−] [mol L−1] (21)

or, in electrostatic quantities

σ = Tσ
F

sq
[C m−2] (22)

In addition, the charge may be defined from an electrostatic relationship (e.g. a Helmholtz
constant capacitance):

σ = CΨ [C m−2] (23)

The “total concentration” or charge of the surface is, in the case of the constant capacitance
model, given by the independent electrostatic charge-potential relationship of Equation 22. In
molar quantities, this is

Tσ = σ
sq

F
= CΨ

sq

F
[mol L−1] (24)

The subscript “σ” or “Ψ” is used to denote the electrostatic components (e.g. Tσ, XΨ). Since
Tσ is not experimentally determined, but a function of the potential, the derivative of Tσ with
respect to XΨ is not zero and must be attached to the expression given by Equation 11 for a
Jacobian element:

zΨΨ =
∂Yσ
∂XΨ

=
N∑
i=1

aiΨaiΨCi
XΨ

− ∂Tσ
∂XΨ

(25)

∂Tσ
∂XΨ

= −C
sq

F

RT

FXΨ
(26)

Equation 26 has been derived using

∂Tσ
∂XΨ

=
∂Tσ
∂Ψ

dΨ
dXΨ

(27)

The convergence criteria have to be changed for some of the electrostatic models. In the
following sections, all electrostatic models implemented in µQL are summarised. The symbol∑

ΨΨ (with indices where necessary) denotes the sum in the Jacobian element zΨΨ (Equation
11). If only one electrostatic component is used, no indices (for C, Ψ, and σ) are used.

6.1 Constant capacitance model (model 2)

Total concentrations:

TSOH =
NSsq

NA
(28)

Tσ = CΨ
sq

F
(29)

Jacobian:

zΨΨ =
∑
ΨΨ

+C
RT

FXΨ

sq

F
(30)

Convergence test:

no change necessary
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6.2 Diffuse layer model (model 3)

Total concentrations:

TSOH =
NSsq

NA
(31)

Tσ =
√

8εε0RTI sinh
(

FΨ
2RT

)
sq

F
(32)

Jacobian:

zΨΨ =
∑
ΨΨ

+
√

8εε0RTI cosh
(

FΨ
2RT

)
sq

FXΨ
(33)

Convergence test:

no change necessary

6.3 Basic Stern layer model (model 4)

Total concentrations:

TSOH =
NSsq

NA
(34)

Tσ0 = C(Ψ0 −Ψ1)
sq

F
(35)

Tσ1 = C(Ψ1 −Ψ0)
sq

F
+
√

8εε0RTI sinh
(

FΨ
2RT

)
sq

F
(36)

Jacobian:

zΨ0Ψ0 =
∑

Ψ0Ψ0

+C
RT

FXΨ0

sq

F
(37)

zΨ0Ψ1 =
∑

Ψ0Ψ1

−C
RT

FXΨ1

sq

F
(38)

zΨ1Ψ0 =
∑

Ψ1Ψ0

−C
RT

FXΨ0

sq

F
(39)

zΨ1Ψ1 =
∑

Ψ1Ψ1

+
[
C +

F

2RT

√
8εε0RTI cosh

(
FΨ1

2RT

)]
RT

FXΨ1

sq

F
(40)

Convergence test:2

σ1 :
|Yσ1 |∑N

i=1 |aijCi|+ |Tσ0 |+
∣∣σd sqF ∣∣ < ε (41)

where σd is the diffuse layer charge given by

σd =
√

8εε0RTI sinh
(

FΨd

2RT

)
(42)

2This formula is taken from Westall (1979). However, in the source code (MIC7.BAS, 2/7/87) the denominator
is set to ABS(-T[L0])+ABS(D3*D4). In µQL, the same denominator is used.
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6.4 Triple layer model (model 5)

Total concentrations:

TSOH =
NSsq

NA
(43)

Tσ0 = C1(Ψ0 −Ψ1)
sq

F
(44)

Tσ1 = [C1(Ψ1 −Ψ0) + C2(Ψ1 −Ψ2)]
sq

F
(45)

Tσ2 = C2(Ψ2 −Ψ1)
sq

F
(46)

Jacobian:

zΨ0Ψ0 =
∑

Ψ0Ψ0

+C1
RT

FXΨ0

sq

F
(47)

zΨ0Ψ1 =
∑

Ψ0Ψ1

−C1
RT

FXΨ1

sq

F
(48)

zΨ1Ψ0 =
∑

Ψ1Ψ0

−C1
RT

FXΨ0

sq

F
(49)

zΨ1Ψ1 =
∑

Ψ1Ψ1

+(C1 + C2)
RT

FXΨ1

sq

F
(50)

zΨ1Ψ2 = −C2
RT

FXΨ2

sq

F
(51)

zΨ2Ψ1 = −C2
RT

FXΨ1

sq

F
(52)

zΨ2Ψ2 =
[
C2 +

F

2RT

√
8εε0RTI cosh

(
FΨ2

2RT

)]
RT

FXΨ2

sq

F
(53)

zΨ2Ψ0 = 0 (54)
zΨ0Ψ2 = 0 (55)

(56)

Convergence test:3

σ2 :

∣∣σd sqF ∣∣− |Tσ2 |
|Tσ2 |

< ε (57)

where σd is given by Equation 42.

7 Normalised sensitivity coefficients

7.1 General

The normalised sensitivity coefficients4 are defined in Furrer et al. (1989) as

Piα =
d lnCi
d lnKα

i, α = 1 . . .N (58)

3This formula is taken from Westall (1979). However, in the source code (MIC8.BAS, 2/7/87) the denominator
is set to ABS(T[L2])+ABS(D3*D4). In µQL, the same denominator is used.

4In µQL, the calculation of normalised sensitivity coefficients is implemented for models 0, 1, and 2.
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They can be interpreted for practical purposes in the following way: a one percent change in the
equilibrium constant α will cause a Piα percent change in in the concentration of species i. This
interpretation is based on a finite-difference approximation to the derivatives in Equation 58:

Piα =
d lnCi
d lnKα

=
dCi
dKα

Kα

Ci
≈ ∆Ci

∆Kα

Kα

Ci
(59)

Using the chain rule, dCi/dKα can be expressed as

dCi
dKα

=
U∑
j=1

∂Ci
∂Xj

∂Xj

∂Kα
+

∂Ci
∂Kα

(60)

Note that the summation runs from j = 1 to j = U since Xj>U is fixed (i.e. constant).
From Equation 5 we obtain

∂Ci
∂Kα

=
Ci
Kα

i = α (61)

and

∂Ci
∂Kα

= 0 i 6= α (62)

∂Ci/∂Xj has already been derived (Equation 10).
∂Xj/∂Kα can be found by applying the chain rule to dYj/dKα:

dYj
dKα

=
U∑
k=1

∂Yj
∂Xk

∂Xk

∂Kα
+

∂Yj
∂Kα

(63)

Now,

dYj
dKα

= 0 (64)

because Y = 0 when the µQL-problem is solved. Therefore,

U∑
k=1

∂Yj
∂Xk

∂Xk

∂Kα
+

∂Yj
∂Kα

= 0 (65)

∂Yj/∂Xk corresponds to the elements of the Jacobi matrix, zjk, derived above. ∂Yj/∂Kα can
be calculated using Equations 3 and 5 to yield

∂Yj
∂Kα

= aαj
Cα
Kα

(66)

This means that for every equilibrium constant α, there is a set of U equations with the unknowns
∂Xk/∂Kα to be solved. In matrix notation, this is

ZX ′ = C′ (67)

where

X ′k =
∂Xk

∂Kα
(68)

and

C′j = − ∂Yj
∂Kα

(69)
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7.2 Constant capacitance model

In the constant capacitance model, all of the above remains valid. We can extend the computation
of the normalised sensitivity coefficients by including the sensitivity of the species with respect
to the total concentration of the surface component SOH

PiSOH =
d lnCi

d lnTSOH
(70)

and with respect to the capacitance

PiC =
d lnCi
d lnC

(71)

The procedure to obtain the derivatives necessary is analogous to the computations for the
equilibrium constants, in Equations 60 and 65 the variable Kα has to be replaced by TSOH and
C, respectively. ∂Ci/∂TSOH and ∂Ci/∂C are always zero.

For the sensitivity coefficients with respect to TSOH, the elements of the vector C′ (Equation
67) are calculated as follows

∂Yj
∂TSOH

= 1 j = SOH (72)

and

∂Yj
∂TSOH

= CΨ
NA

FNS
j = α (73)

using Equations 28 and 29, and

∂Yj
∂TSOH

= 0 j 6= SOH, j 6= σ (74)

For the sensitivity coefficients with respect to C, the elements of the vector C′ (Equation 67)
are calculated according to

∂Yj
∂C

=
Tσ
C

j = σ (75)

using Equation 29, and

∂Yj
∂C

= 0 j 6= σ (76)

8 Saturation ratio

The vector Ξ obtained by multiplying the matrix S by the (final) vector X? (Ξ = SX?) can be
used to calculate the saturation ratio Ω with respect to the different solid phases. The saturation
ratio Ωs for the solid s is defined by

Ωs =
IAPs
10Lps

=
10Ξs

10Lps
(77)

where IAPs is the ion activity product (i.e. the product of the actual activities in the solution)
and Lps the solubility product (base 10 logarithm). If the solution is oversaturated, Ω ≥ 1.
Note that the values of Ω are not identical for a solid represented by AaBb and A2aB2b, i.e. the
saturation ratio is not “normalised” (Stumm 1992).
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9 Percentage distribution

The amount of component j in species i (in % of the component’s total concentration) can be
calculated by

aijCi
Tj

100 j ≤ U (78)

and

aijCi
Yj

100 j > U (79)

These %-values can be used to determine whether a species is relevant in the system considered.
A species can be considered relevant if it contains more than e.g. 1 % of at least one component
(since the %-values can also be negative, the absolute value should be taken).
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